ADVANCED PLACEMENT PHYSICS 2 EQUATIONS, EFFECTIVE 2015

CONSTANTS AND CONVERSION FACTORS

Proton mass, $m_p = 1.67 \times 10^{-27} \text{ kg}$

Neutron mass, $m_n = 1.67 \times 10^{-27} \text{ kg}$

Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$

Avogadro's number, $N_0 = 6.02 \times 10^{23} \text{ mol}^{-1}$

Universal gas constant, $R = 8.31 \text{ J/(mol \cdot K)}$

Boltzmann's constant, $k_B = 1.38 \times 10^{-23} \text{ J/K}$

 $e = 1.60 \times 10^{-19} \text{ C}$ Electron charge magnitude,

1 electron volt, $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

 $c = 3.00 \times 10^8 \text{ m/s}$ Speed of light,

Universal gravitational

 $G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$ constant,

Acceleration due to gravity

 $g = 9.8 \text{ m/s}^2$ at Earth's surface,

1 unified atomic mass unit,

$$1 \text{ u} = 1.66 \times 10^{-27} \text{ kg} = 931 \text{ MeV/}c^2$$

Planck's constant.

$$h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s} = 4.14 \times 10^{-15} \text{ eV} \cdot \text{s}$$

$$hc = 1.99 \times 10^{-25} \text{ J} \cdot \text{m} = 1.24 \times 10^3 \text{ eV} \cdot \text{nm}$$

Vacuum permittivity,

$$\varepsilon_0 = 8.85 \times 10^{-12} \,\mathrm{C}^2 / \mathrm{N} \cdot \mathrm{m}^2$$

Coulomb's law constant, $k = 1/4\pi\varepsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$

$$\mu_0 = 4\pi \times 10^{-7} \text{ (T-m)/A}$$

Vacuum permeability,

Magnetic constant,
$$k' = \mu_0/4\pi = 1 \times 10^{-7} \text{ (T-m)/A}$$

1 atmosphere pressure,

$$1 \text{ atm} = 1.0 \times 10^5 \text{ N/m}^2 = 1.0 \times 10^5 \text{ Pa}$$

	meter,	m	mole,	mol	watt,	W	farad,	F
LINIT	kilogram,	kg	hertz,	Hz	coulomb,	C	tesla,	T
UNIT SYMBOLS	second,	S	newton,	N	volt,	V	degree Celsius,	°C
SIMBOLS	ampere,	A	pascal,	Pa	ohm,	Ω	electron volt,	eV
	kelvin,	K	joule,	J	henry,	Н		·

PREFIXES				
Factor	Prefix	Symbol		
10 ¹²	tera	T		
109	giga	G		
10 ⁶	mega	M		
10 ³	kilo	k		
10^{-2}	centi	С		
10^{-3}	milli	m		
10^{-6}	micro	μ		
10 ⁻⁹	nano	n		
10^{-12}	pico	p		

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	8

The following conventions are used in this exam.

- I. The frame of reference of any problem is assumed to be inertial unless
- II. In all situations, positive work is defined as work done on a system.
- The direction of current is conventional current: the direction in which positive charge would drift.
- IV. Assume all batteries and meters are ideal unless otherwise stated.
- V. Assume edge effects for the electric field of a parallel plate capacitor unless otherwise stated.
- VI. For any isolated electrically charged object, the electric potential is defined as zero at infinite distance from the charged object.

ADVANCED PLACEMENT PHYSICS 2 EQUATIONS, EFFECTIVE 2015

MECHANICS

 $v_x = v_{x0} + a_x t$ a = access A = amplitud d = distance E = energy $V_x^2 = V_{x0}^2 + 2a_x(x - x_0)$ F = force f = frequency I = rotationsa = accelerationA = amplitudef = frequency

I = rotational inertia $\vec{a} = \frac{\sum \vec{F}}{m} = \frac{\vec{F}_{net}}{m}$ K = kinetic energyk = spring constant

L = angular momentum $\ell = length$ m = mass

P = powerp = momentum

r = radius or separation

T = periodt = time

U = potential energy

v = speed

W =work done on a system

x = position $\Delta E = W = F_{||}d = Fd\cos\theta$ y = height

 α = angular acceleration μ = coefficient of friction θ = angle

 $\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$ τ = torque ω = angular speed

 $U_s = \frac{1}{2}kx^2$

 $x = A\cos(\omega t) = A\cos(2\pi f t)$ $\Delta U_{\varrho} = mg \, \Delta y$

 $x_{cm} = \frac{\sum m_i x_i}{\sum m_i}$ $T = \frac{2\pi}{\omega} = \frac{1}{f}$

 $T_s = 2\pi \sqrt{\frac{m}{L}}$

 $\tau = r_{\perp}F = rF\sin\theta$ $L = I\omega$ $T_p = 2\pi \sqrt{\frac{\ell}{\varrho}}$

 $\left| \vec{F}_g \right| = G \frac{m_1 m_2}{r^2}$

 $\vec{g} = \frac{\vec{F_g}}{m}$

 $U_G = -\frac{Gm_1m_2}{r}$ $|\vec{F}_{\rm s}| = k|\vec{x}|$

ELECTRICITY AND MAGNETISM

A = area $\left| \vec{F}_E \right| = \frac{1}{4\pi\varepsilon_0} \frac{|q_1 q_2|}{r^2}$ B = magnetic fieldC = capacitance $\vec{E} = \frac{\vec{F}_E}{a}$ d = distanceE = electric field

 $\varepsilon = \text{emf}$ $\left| \vec{E} \right| = \frac{1}{4\pi\varepsilon_0} \frac{|q|}{r^2}$ F = forceI = current $\Delta U_F = q\Delta V$ $\ell = length$

P = power $V = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$ Q = charge

q = point charge $\left| \vec{E} \right| = \left| \frac{\Delta V}{\Delta r} \right|$ R = resistancer = separation

t = time $\Delta V = \frac{Q}{C}$ U = potential (stored)

energy $C = \kappa \varepsilon_0 \frac{A}{d}$ V = electric potential

v = speed $E = \frac{Q}{\varepsilon_0 A}$ κ = dielectric constant ρ = resistivity

 θ = angle $U_C = \frac{1}{2}Q\Delta V = \frac{1}{2}C(\Delta V)^2$ $\Phi = flux$

 $I = \frac{\Delta Q}{\Delta t}$

 $R = \frac{\rho \ell}{\Lambda}$ $\vec{F}_M = q\vec{v} \times \vec{B}$

 $|\vec{F}_M| = |q\vec{v}| |\sin\theta| |\vec{B}|$ $P = I \Delta V$

 $I = \frac{\Delta V}{R}$ $\vec{F}_M = I\vec{\ell} \times \vec{B}$

 $R_s = \sum_i R_i$ $|\vec{F}_{M}| = |\vec{I}\ell| |\sin\theta| |\vec{B}|$

 $\frac{1}{R_n} = \sum_{i} \frac{1}{R_i}$ $\Phi_{\scriptscriptstyle D} = \vec{B} \cdot \vec{A}$

 $C_p = \sum_i C_i$ $\Phi_B = |\vec{B}| \cos \theta |\vec{A}|$

 $\frac{1}{C_{\rm s}} = \sum_{i} \frac{1}{C_{i}}$ $\varepsilon = -\frac{\Delta \Phi_B}{\Delta t}$

 $B = \frac{\mu_0}{2\pi} \frac{I}{r}$ $\varepsilon = B\ell v$

ADVANCED PLACEMENT PHYSICS 2 EQUATIONS, EFFECTIVE 2015

FLUID MECHANICS AND THERMAL PHYSICS

0	=	m		
Ρ		\overline{V}		

A = areaF = forceh = depth

m = mass

 $P = \frac{F}{A}$

k =thermal conductivity

 $P = P_0 + \rho g h$

K = kinetic energyL =thickness

n = number of moles

N = number of molecules

P = pressure

 $P_1 + \rho g y_1 + \frac{1}{2} \rho {v_1}^2$

Q = energy transferred to asystem by heating

 $= P_2 + \rho g y_2 + \frac{1}{2} \rho v_2^2$

T = temperature

t = time

U = internal energy

V = volumev = speed

W =work done on a system

 $PV = nRT = Nk_RT$

y = height ρ = density

MODERN PHYSICS

$$K = \frac{3}{2}k_BT$$

 $\frac{Q}{\Delta t} = \frac{kA \Delta T}{L}$

$$W = -P\Delta V$$

$$\Delta U = Q + W$$

 $K_{\text{max}} = hf - \phi$

WAVES AND OPTICS

$$\lambda = \frac{v}{f}$$

d = separationf = frequency or focal length

 $n = \frac{c}{a}$

h = heightL = distance

 $n_1 \sin \theta_1 = n_2 \sin \theta_2$ M = magnification

m =an integer

$$\frac{1}{s_i} + \frac{1}{s_o} = \frac{1}{f}$$

n = index ofrefraction

 $|M| = \left| \frac{h_i}{h_o} \right| = \left| \frac{s_i}{s_o} \right|$

s = distancev = speed

 $\Delta L = m\lambda$

 λ = wavelength

$$d\sin\theta = m\lambda$$

 θ = angle

GEOMETRY AND TRIGONOMETRY

Rectangle

A = area

A = bh

C = circumference

V = volume

Triangle

S = surface area

 $A = \frac{1}{2}bh$

b = baseh = height

Circle

 $\ell = length$

 $A = \pi r^2$

w = widthr = radius

 $C = 2\pi r$

Rectangular solid

 $V = \ell wh$

Right triangle

Cylinder

 $c^2 = a^2 + b^2$

 $\sin\theta = \frac{a}{a}$

 $V = \pi r^2 \ell$

 $\cos\theta = \frac{b}{c}$

p = momentum λ = wavelength

K = kinetic energy

E = energy

m = mass

f = frequency

 $S = 2\pi r\ell + 2\pi r^2$

 $\tan \theta = \frac{a}{b}$

Sphere $V = \frac{4}{3}\pi r^3$

 $S = 4\pi r^2$

90°

 $E = mc^2$

E = hf

 $\lambda = \frac{h}{n}$

 ϕ = work function