AP® PHYSICS 1 TABLE OF INFORMATION

CONSTANTS AND CONVERSION FACTORS

Proton mass, $m_p = 1.67 \times 10^{-27} \text{ kg}$

Neutron mass, $m_n = 1.67 \times 10^{-27} \text{ kg}$

Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$

Speed of light, $c = 3.00 \times 10^8$ m/s

Electron charge magnitude,

 $e = 1.60 \times 10^{-19} \text{ C}$

Coulomb's law constant,

 $k = 1/4\pi\epsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$

Universal gravitational

constant,

 $G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$

Acceleration due to gravity at Earth's surface,

 $g = 9.8 \text{ m/s}^2$

	meter,	m	kelvin,	K	watt,	W	degree Celsius,	°C
UNIT	kilogram,	kg	hertz,	Hz	coulomb,	С		
SYMBOLS	second,	S	newton,	N	volt,	V		
	ampere,	A	joule,	J	ohm,	Ω		

PREFIXES						
Factor	Prefix	Symbol				
10 ¹²	tera	Т				
10 ⁹	giga	G				
10 ⁶	mega	M				
10 ³	kilo	k				
10^{-2}	centi	С				
10^{-3}	milli	m				
10^{-6}	micro	μ				
10 ⁻⁹	nano	n				
10^{-12}	pico	p				

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	o°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	∞

The following conventions are used in this exam.

- I. The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- II. Assume air resistance is negligible unless otherwise stated.
- III. In all situations, positive work is defined as work done on a system.
- The direction of current is conventional current: the direction in which positive charge would drift.
- V. Assume all batteries and meters are ideal unless otherwise stated.

AP® PHYSICS 1 EQUATIONS

MECHANICS

WECHANICS						
$v_x = v_{x0} + a_x t$	a = acceleration d = distance					
$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$	E = energy $f = frequency$					
$\begin{vmatrix} v_x^2 = v_{x0}^2 + 2a_x(x - x_0) \end{vmatrix}$	F = force $h = $ height					
$\vec{a} = \frac{\sum \vec{F}}{m} = \frac{\vec{F}_{net}}{m}$	I = rotational inertiaK = kinetic energy					
m m	k = spring constant					
$\left \vec{F}_f \right \le \mu \vec{F}_n $	L = angular momentum $\ell = \text{length}$					
$a_c = \frac{v^2}{r}$	m = mass P = power					
$\vec{p} = m\vec{v}$	p = momentum r = radius or separation					
$\Delta \vec{p} = \vec{F} \Delta t$	T = period $t = time$					
$K = \frac{1}{2}mv^2$	U = potential energy V = volume v = speed					
$\Delta E = W = F_{\parallel} d = F d \cos \theta$	W = speed W = work done on a system x = position					
$P = \frac{\Delta E}{\Delta t}$	α = angular acceleration μ = coefficient of friction					
$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$	$\theta = \text{angle}$ $\rho = \text{density}$					
$\omega = \omega_0 + \alpha t$	$\tau = \text{torque}$ $\omega = \text{angular speed}$					
$x = A\cos(2\pi ft)$	$\Delta U_g = mg \Delta y$					
$\vec{\alpha} = \frac{\sum \vec{\tau}}{I} = \frac{\vec{\tau}_{net}}{I}$ $\tau = r_{\perp}F = rF\sin\theta$	$T = \frac{2\pi}{\omega} = \frac{1}{f}$					
$L = I\omega$	$T_s = 2\pi \sqrt{\frac{m}{k}}$					
$\Delta L = \tau \Delta t$	$T_p = 2\pi \sqrt{\frac{\ell}{g}}$					
$K = \frac{1}{2}I\omega^2$	$I_p - 2n\sqrt{g}$					
$\left \vec{F}_s \right = k \vec{x} $	$\left \vec{F}_g \right = G \frac{m_1 m_2}{r^2}$					
$U_s = \frac{1}{2}kx^2$	$\vec{g} = \frac{\vec{F}_g}{m}$					
$ \rho = \frac{m}{V} $	$U_G = -\frac{Gm_1m_2}{r}$					

ELECTRICITY

$$|\vec{F}_E| = k \frac{|q_1 q_2|}{r^2}$$

$$|\vec{F}_E| = k \frac{|q_1 q_2|}{r^2}$$

$$|I = \frac{\Delta q}{\Delta t}$$

$$|I = \frac{\Delta q}{\Delta t}$$

$$|R = \frac{\rho \ell}{A}$$

$$|I = \frac{\Delta V}{R}$$

$$|V = \text{electric potential }$$

$$|I = \frac{\Delta V}{R}$$

$$|V = \text{electric potential }$$

$$|V = \text{electric po$$

WAVES

12	f =	frequency
$\lambda = \frac{v}{f}$	v =	speed
J	$\lambda =$	wavelength

GEOMETRY AND TRIGONOMETRY

Rectangle $A = bh$ Triangle $A = \frac{1}{2}bh$ Circle $A = \pi r^{2}$ $C = 2\pi r$	A = area $C = circumference$ $V = volume$ $S = surface area$ $b = base$ $b = height$ $b = length$ $b = width$ $b = volume$ $b = volume$ $c = volume$ $c = volume$
Rectangular solid $V = \ell wh$ Cylinder	Right triangle $c^2 = a^2 + b^2$ $\sin \theta = \frac{a}{a}$

